Ultra-Peripheral Collisions

Pablo Yepes for the UPC group

• Physics in 2000-2001
• Physics prospects till 2004
• RHIC II Assumptions
• γA
• $\gamma \gamma$
• A new detector?
Physics 2001

- Topology Trigger
 - ~ 10,000 ρ^0
 - 50 X year 2000 sample
- Minimum Bias Trigger
 - ~ 4,300 ρ^0
 - 10 X year 2000 sample
- FTPC
 - forward tracks

- Physics:
 - ρ^0 cross sections
 - \sqrt{s} scaling
 - ρ^0 interference
 - wave function collapse
 - $f_2(1270)$?
 - $\gamma\gamma$ produced resonance
 - J/Ψ - handful of events ?
 - e^+e^- pairs
 - 4-prongs
 - $\rho^*(1450/1700)$
 • spectroscopy
 • absorption

Bar Harbor, June 19, 2002

Pablo P. Yepes
2002 -2004 Prospects

- BBC (+ MWC?)
 - ~ X5 trigger purity
- Higher Luminosity
- More selective min-bias trigger
- Hope for 10X data
- Calorimeter in trigger
 - final states with neutrals
 - high efficiency J/ψ (?)
- MWC (?): can be used as veto and positive trigger

- Physics (partial list)
 - ρ° ρ°
 - correlated production
 - J/ψ, ψ’ (?)
 - gluon shadowing
 - meson spectroscopy
RHIC II assumptions

- 40x luminosity
- Fast readout
 - >> few Hz UPCs to tape
- Improved Particle ID
 - TOF
 - Microvertex detector
 - open charm
 - full calorimetry
γA at RHIC II

- $\rho^0 \rho^0$
 - correlated (stimulated) decay
- $\rho^0 \rho^0 \rho^0$
- high statistics J/ψ, ψ' (?)
 - high statistics gluon shadowing
- Y production (with lighter nuclei)
 - shadowing at higher Q^2
- meson spectroscopy
 - search for exotic ($J^{PC}=2^{-+}$) mesons
 - search for charm hybrids (ccg)
 - study vector meson-nucleon interactions
- photo-production of open charm
 - Gluon shadowing
γγ at RHIC II

- meson spectroscopy
 - search for exotic mesons (STAR Note 243)
 - charmonium spectroscopy (η_c, χ_s, etc.)
 - search for charm hybrids (c_c)
- γγ → baryon pairs (ΛΛ, etc): baryon form factors
- γγ → τ^+τ^-: decay angle correlation, EPR paradox studies
- γγ → c_c
 - surprisingly, k factors are small and controlled for this reaction
 - requires complete DD reconstruction (low efficiency)
 - measurement of charm quark mass
Triggers Used

L0

- Minbias (ZDC coincidence): AA → A*A* X, X=ρ, ee, f₂,….
- Topological: Coincidence in North-South CTB (no requirement in ZDC). Mainly AA → AA X. Low efficiency (10% for ρ) and very noisy ~1/500
- Topological with ZDC: Very clean but very low efficiency

Topology trigger used with L3

Improving trigger will have a great impact
ρ p_T and y Acceptance and Efficiency

From ρ MC sample

2 Tr, $q=0$, $|z|<200$ cm, $r<15$ cm

+ P4 Trigger

$|y_\rho| < 1$
A New Detector?

- A Detector able to trigger and see low p_T tracks would be beneficial for UPC.
- SVT could bring the p_T cutoff. Could a detector trigger in that area? SVT? A Scintillator Fiber Barrel?
 - ee is seriously limited by low acceptance
 - Final states with low Kaons will improve ($\phi \rightarrow KK$)
 - Background rejection: coincidence CTB and small radius fast detector
Conclusions

- UPC can greatly benefit from high luminosity.
- A detector to trigger low p_T tracks could greatly enhance topology trigger and some areas of the program (ϕ, e^+e^-).
- Completion of current upgrades (EMC, TOF, microVertex) would open new channels.